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I. INTRODUCTION

Consider a random sample X1, X2, ..., Xn from a population with a continuous
distribution function. One method of testing the hypothesis that the n
observations come from a population with a specified distribution function F(x) is
by a chi-square test. This test requires a subjective partitioning of the real line R
and a comparision of the empirical histogram with the hypothetical histogram. A
more objective method, is to compare the empirical distribution function Fn(x)
with the hypothetical distribution function F(x). The empirical distribution

function based on n observations is defined as Fn(x) - - if exactly k
n

observations are less than or equal to x for k - 0, 1, ..., n.

To compare the empirical and hypothetical distribution functions a measure
of their difference is required. Addressing this, Anderson and Darling [1952]
considered the following metrics in function space:

00

w -n f [F,(x) - F(x)] ;lF(x)] dF(x) (1)
-00

and

Ir - sup V/- IF,,(x) - F(x)IN/iFJ(x)]. (2)
-C* < X < 00

Samples producing large values of W 2 (or Kn) lead to rejection of the null
hypothesis that the population distribution function is F(x). One of the
contributions of Anderson and Darling was the incorporation of a nou-negative
weight function 1P in (1) and (2). By a suitable choice for 0, specific ranges of
values of the random variable X, corresponding to different regions of the
distribution F(x), may be emphasized. For 01F(x)] w 1, W2 becomes the Cramfr-
von Mises statistic [Cramgr, 1028 and von Mises, 1031] and Ka becomes the
Kolmogorov statistic [Kolmogorov, 19331.

The tails of the distribution function will be accentuated in the investigation
detailed in this paper; Anderson and Darling suggest using

1A4F(x)J m 1
F(x) [1 - F(x)]

With this choice for the weighting function, metric (1) becomes the basis for the
Anderson-Darling statistic.



In Section II, the Anderson-Darling test statistic Is developed; in Section III,
the most accurate tabulation to date of the test statistic is provided. In Section
IV, the description and the results of a power study are given in which the
Anderson-Darling, the Cramir-von Mises, and the Kolmogorov statistics are
compared.

II. THE ANDERSON-DARLING STATISTIC

For a fixed value of the random variable X, say X - x, the empirical
distribution function Fn(x) is a statistic, since it is a function of the sample values
x 1, x2, ..., xn. The distribution of this statistic Is established as a lemma.

Lemma (1): If Fn(x) is the empirical distribution
function corresponding to a random sample X1, X2, ... , Xn
of size n from a distribution H('), then for a fixed x, nFn(x)
is distributed binomial (H(x),n).

Proof:

P(nFn(x) - k) - P(exactly k values xi < x), for k - 0, 1, ..., n.

Let Zi = ( x (Xi), where the indicator function I is defined as

1if -0o< X < x1(-00, X] (Xi)- ,i-o<--._x

{0, otherwise

Then EZi counts the number of sample values x _ x.
Here each Zi -Bernoulli (H(x)), so EZ, -binomial (H(x), n).
Therefore,

P(nF,(x) - k) - P(exactly k values xi _ x)
-P(MZ i -k)

- ) H(x)k (1 - H(x)) .

2



From Lemma 1,

E[Fn(x)] - n E nF(x] H(x)

and
1 [ l 1 , J

Var[F,(x)] "n Var [nFn(x)] - H(x) [1 - Hx)j (3)

To assist in the determination of a suitable weighting function 4(), that is,
a function that will weight more heavily values in the tails of the distribution
F(x) at the expense of valu closer to th median, consider the expectation of
the squared discrepancy E[Fn(x) - F(x)] . It is important to keep in mind

that the value x is fixed, so F(x) is a constant, and the expectation is with
respect to the random variable F,(x) whose distribution was established in
Lemma 1. Then

n E [F.(x) - F(x)]2 - n E [Fn(x) - H(x) + H(x) - F(x)]2

[{nE Ff(x) - H(x)} F(x) - H(x)}]

which, after algebraic manipulation (Appendix A) yields the variance and bias2

-n [I {H(x){1 - H(x)}}+ {F(x) - H(x)}]. (4)

Under the null hypothesis Ho: H(x) = F(x) \/x, (4) becomes

n E [Fn(x) - F(x)]2 - F(x)[1 - F(x)] (5)

Anderson-Darling chose as a weighting function, 44F(x)] -
F(x) [ - F(x)]



Weighting by the reciprocal of (6) takes into consideration the variance of the
statistic Fn(x) and also maintains the objective of accentuating values in the
tails of F(x).

WVith this choice of weighting function and without loss of generality
assuming x1 <X2 :<... <x n, let F(x) - u, dF(x) - du, and F(xi) - u,. Then
the Anderson-Darling test statistic (0) can be rewritten as expression (7) by
expansion and integration (Appendix B).

00 [Fn(x) - F(x)]2 dFx) (8)
F(x) [1 - F(x)] (

N =* - - [(2i-l)ln u1 + (2(n-i)+1) ln(1-ui)] (7)

III. DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC

The asymptotic distribution of NW was derived by Anderson and Darling
[19521. Lewis [10011 undertook the tabulation of F(z; n) - P(WV < z) for
n = 1. 2, ... , 8 and for incremental values of z over the interval [0.025, 8.000).
Lewis' table entries were computed using a Monte Carlo procedure to generate
an empirical approximation Fm(z;n) to the distribution function F(z;n) based
on m samples of size n. At that time, computational restrictions essentially
limited the accuracy of the table entries to within 0.00326 of the true value.

Following an analogous procedure based on 'expression (7) and the
observation that the U, are distributed U[0,1] [Feller, 1966], the table appearing
in Lewis' paper was recalculated using a Cray-2 supercomputer. Table 1 lists
the reconstruction of Lewis' table, now accurate within 0.0005. Again, z ranges
from 0.025 to 8.000 and for n - 1, 2, ... , 10. The column labeled "oo" contains
the asymptotic values, rounded to four decimal places.

To obtain this increased accuracy, a Kolmogorov-type bound [Conover,
1980 was used to construct a 95% confidence band for the distribution
function F(z;n). In general, the width of a (1 - a)100% confidence band Is
equal to twice the value of the (1 - a)100% quantile of the Kolmogorov

statistic Km- sup \m IFm(x) - F(x)l , where m is the number of
-00 < X < 00

Monte Carlo samples of size n used in the construction of Fm(x). With n fixed,
the 05% confidence band can be made arbitrarily small by a suitable choice for

4



g - w T

-4 P

N C- -

ore.

r- en r

- r~40'or- C-4~ N '-

F4 va\ r4 ~ N -
- -- C4

N - 21 ; K5- nr

=- c" Nt

5 V



rl: 'q 'q Nq ON-

0 Q 0 0 0 0 0D 00 0 0 0D 0000 0 0D 0 0 0)

r- ocwl el 'I - V- W)

o, X 0 m T - -NO~ C4 r- N
Orl " k.-)

-~~~~~~~F xo w x

oq~ N o'q

W I z (N r- rc(1rNc e C r

r C- tt00 -( Ncr 1

- r- e" 7 N

X~0 0 00f- N0MV) C
(N)~ '.Q0 0(N =. 4V~~~U~~~\C~~ ctN N r. 0 0 0 0 0 O O Ooooooooo r_ r_ ooo66666

C) :

C, e14 s66 m.6 4 0 C, ro r- 6 - C6 "

r14 r 1 4 11 11 1r) 14N 6



00 C 0 0 0 6 0 0 0 5 0 C5 00 0 0 0 0a0 0 Q 0 0 0 0 c

e ~ ~ ~ r 00 0 nC4 -W 1

0 00 6 0' 00 0 0 0 ) 0 D 0 0 0 000 0 0

W) W') -l N T COC48 Mr )C
- - V -C #-, - -f)4 ( 1 r Er

0i 0 0 : C5 6 as 5 d 00 0 0 05 00 00 o 0

-C t- tc r'4 r- -- oc cylo co

-' r r-

_, 'I ,\_C ,*I ,C44 )r--W^

C N NN N N, C

V, r.- r- 0' .0 r o N m 0 V!e 4- '

m C, 'T xr-NhC',

-) V) k) r r'*0 '*OC w ,
C6o o o o o o oo o o o o o o

C, )W

Co ooooeoooo66K 66.6. .. . o.o.oo. .. o.

W) UrN V- 0'r,~O WCN N
en r-J

00 00 00 0 00 00 00 0 00 66 0

(2 NC 7 ( C C (1 0

0 ) C 0C 00 MQC)0 ) 00 D7



00 o

ol oo* * OOc
l 0C 0X 0 0 0 .0 0 .0 . .0 0 .00 0 0 0 0 .

=:i~ =-=c=( ( =0C =C =

000000000000000000000000C

C-4
oo e6 6 oo ooC66 66 o

C5! N\ O e

c d d c 0i d 00 d 0Q 00 0 000000

r t - en o z e c ~- oc
i ~ ~ C r- 3F C ta

666 66 666 66 oooo6

00 0 00 00 0 00 00 00 0

'9 H
00000~0000 00 0 0 0 0 0 0

6o c D C C 6 C5 0 00 0 0 0 00 0 0 0



m. The commonly tabled [Miller. 1956] asymptotic approximation for the 9 5 th

quantile is 1.358/'V'm. However. Harter [1980] suggests using

1.5

1.358 , where r =(m + 4)4 (8)

m+r

for an improved approximation.

Using approximation (8) to construct a 95% confidence band with the width
not exceeding 0.001. the value for m must be at least 7,375,881. In this
simulation. m was chosen to be 7.4 million1 .

IV. POWER STUDY

The power of the Anderson-Darling test was compared with two other
goodness-of-fit procedures based on the empirical distribution function: the
Kolmogorov and the Cram6r-von Mises tests. The Kolmogorov statistic
introduced in Section 1 as metric (2) with weighting function V, [F(x)] =_ 1
becomes

K = sup \/n tF,(x) - F(x)I . (9)
-DC <, X <, "C

For an ordered sample x1  x2  < x and F(x,) =u, K, may be evaluated
as N/nD where D = max( D'. D- ) and

D + = max - u,i n

D- = max u .
i n

I The sample values were obtained via a linear congruential uniform random number 4enerator
of the form Xk+l = (aXk + c)modq, where a 273673163155.,= 13., and q=2 4 . It has
the properties of a 'good' random number generator as suggested by Rubinstein 11981J. In
addition, several subsets of the random numbers generated were tested for autocorrelations
with lag up to 36. For each subset and each lag, the autocorrelation did not exceed 0.06 in
absolute value.

9



The Cramr-von .lis s statistic. defined as
cc

wil- n f [F ,(x) - F(x )12 dF(x)
-OC

can be reduced to (10) for ease of computation (Appendix C);
n 2i -- 1.1 + 1
Vs u, + n (10)
-1 2n 12n

In the power study, two cases were considered. Case I corresponds to the
situation in which the parameters of the hypothesized distribution are
completely specified. Case 2 corresponds to the situation in which the
parameters are not specified and must be estimated from the sample data.

For both case 1 and 2. the null hypothesis is

HCo: A random sample X 1, X ...... X n comes from a normal population
or

H : F(x) = F (x). where F 0(x) - N(p, .

As alternative hypotheses. the Cauchy. double exponential, and extreme value
distributions were chosen. each with location parameter the same as the null
hypothesis. This provided a heav'-tailed, light-tailed, and skewed distribution.
respectively, against which the power of tie three goodness-of-fit tests are
compared.

The power functions do not exist in closed form: they are approximated
empirically via a Monte Carlo simulation. To determine a point on the power
curve, a large number of samples of size n was generated from a specific
distribution serving as the alternative hypothesis. The number of times that
the null hypothesis was rejected at a specific level of significance was recorded.
The ratio of the number of rejections, Y, to the total number of samples
generated. N, provides an estimate, p = Y/N, of the probability of rejectin
the null hypothesis when it should be rejected (power). The value p
determines a point on the power curve corresponding to a specific sample size
n, a specific significance level a, and a specific alternative hypothesis.

To determine the number of samples of size n required for a sufficiently
accurate estimate of p, a nonparametric technique was employed. Since the
counter Y is distributed binomial(p,N) where the parameter p is the true but
unknown power, and since an approximate confidence interval for p can be
constructed [Conover, 1980 using

10



< P < I + I ~ I I I • i ,-N) N J (Ii)

samples of size n continued to be generated from the alternative distribution
until the confidence interval for p given in (11) was sufficiently small.

The confidence interval coefficient 1 - a was chosen to be 0.975 and the
confidence interval width not to exceed 0.025. From (11), this will occur when

1

the inequality 2- z0 98 5 - !(l -- v'I < 0.025 is satisfied. For any value of

N. the left-hand side of the inequality is maximum when Y/N is 1/2.
Substituting Y/N = 1/2 into the inequality yields N < 8037 - the largest
possible number of sample, required. In practice. the value for N will usually
be much smaller and will change for each estimate p. This dynamic scheme
was chosen rather than fixing N =8037 for the entire simulation. A minimum
value for N of 100 was imposed to prevent premature termination of the
procedure.

1. Case 1: Distribution Parameters Specified.

The power study for case 1 specified the parameters of the hypothesized
distribution as N(0.1). The results of the study are summarized in
Figures 1 - 12. For each of the three distributions serving as an alternative
hypothesis. samples of size n = 5. 10, 15. 20 were chosen for study and. as
previously mentioned. the location parameters of both the null and alternative
hypotheses coincided. The scale parameter for the alternative hypothesis
ranged from 0.025 to 3.000 in increments of 0.025.

The level of significance for the study was 0.05. The critical value for each
test was determined from tables in Conover [1980] for the Kolmogorov test.
Stephens and Maag [1968] for the Cramr-von Mises test, and Table 1 in
Section III of this paper for the Anderson-Darling test.

The Anderson-Darling test demonstrated overall superiority for the sample
sizes and hypotheses chosen for this study. This is perhaps to be anticipated in
view of the emphasis on agreement in the tails by the Anderson-Darling
procedure, but the magnitude of difference over the Kolmogorov and Cramr-
von Mises tests is impressive.

The power curves corresponding to n = 10, 15, 20 are distinguished by their
characteristic of decreasing to a global minimum before becoming

11



monotonically increasing. An explanation of this feature is suggested by
consideration of Figures 13 - 15 in which the distribution functions of the
N(0,1) and Cauchy (0, ) are compared. There it is seen (Figure 14) that
corresponding to " = 0.50 the two distribution functions are similar; an
increase (decrease) in the scale parameter " causes the tails of the distributions
to become more distinct. Values in a neighborhood of g 0.50 marked the
global minimum throughout the study.

2. Case 2: Distribution Parameters Estimated.

The Anderson-Darling. Kolmogorov, and Cram~r-von Mises goodness-of-fit
tests were developed for use in case 1 where distribution parameters are
specified. and so precludes their use in the more likely situation where
parameters must be estimated. In practice, these procedures are sometimes
used anyway with the caveat that the tests are likely to be conservative.
Stephens [1974] provides adjustments to the test statistics that enables the
tests to be used to test the assumption Ho: F(x) = Fo(x), where F0 (x) - N(p.o 2 )
and the population parameters are estimated from the data.

The results of the power study for case 2, are summarized in
Figures 16 - 27. As in case 1. the sample sizes are n = 5, 10, 15, and 20. and
the level of significance is 0.05. Both location and scale parameters coincide-
the scale parameter are values from 0.025 to 3.000 in increments of 0.025.

Thc power plots are horizontal, demonstrating that power does not change
with scale parameter and provides empirical support for Stephens'
transformations. Power increases with increasing sample size, as would be
expected. When n = 5. the Anderson-Darling test was the least powerful of all
three distributions examined. However, none of the distributions had power
above 0.30 for this sample size. At the larger sample sizes, the Anderson-
Darling test was only slightly better than the Kolmogorov and the Cramr-von
Mises tests. In general, when both location and scale parameters agree, all
three tests are competitive for the sample sizes and alternative distributions
chosen for this study.

12
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APPENDIX A: EXPECTATION OF SQUARED DISCREPANCY
BETWEEN AN EMPIRICAL DISTRIBUTION FUNCTION

AND A SPECIFIED DISTRIBUTION FUNCTION

E [F,,(x) - F(x)]' - E [F.cx) - H(x) + H-(x) - F(x)]2

w E I{Ff(x) - H(x)}- {F(x) - H(x)}]

= E {F.(x) - H(x)} -2 {F n(x) -H(x)}{IF(x)-H(X)}

+ F(x) - H(x)}]

= E [F.cx) - H(x)]2 -2 {F(x) - H(x)}E [F,(x) - H(x)]

2[
+ {F(x) - H(x)}

= E [F.(x) - H(x)] 2 + {F(x) - H(x)}1

- E [Fn 2cX) - 2 F,,(x)H(x) + H 2(X)] + {F(x) - H(x)}0

m E [F n2(X)] -2 H(x) E [Fn(x)] + H 2(X) + {F(x) - H(x)}
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-2-H(x){1 -H(x)) +H 2(x) - 2 H2(x) + H(x 2(X4

+ F(x) - H(x)}]

E [F,,(x) - F(x)] [I{H(x){1 H(x)}}4+ {FWx - H(x)}
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APPENDIX Bi EXPANSION AND INTEGRATION OF
THE ANDERSON-DARLING STATISTIC

2[F.(x) - F(x)] 2 dF )

X1 [F,(x) -F(x)]2 n-I k~ [F,(x) - F(x)]2

1 F(x) [I -F(x)] k-i F(x)[1-F(x)J F]

00[F,(x) - F(x)]2

+ F(x) [I - F(x)] dF(x)I

Let F(x) = u
dF(x) = du
F(x,) = u

2

[0-U]2  n-I U n, (I ( U)2

= n -f du + f -~ dul
n u (I- u) U -+ , u (IU) u (I- U)

n-i n2111 - u +U2
n u n( d+Ef du

k-i ul u(1U)

+ + -i ]
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=n -u,-In(1 - u,)+ - f

k{l U ( U)

+2k +U llI u+ -- f -du
= - n ui u -)

n-i 1 U

+ E - du
k-l u. u -u)

+n uul " In (1- ul1)

k2

n-i 2k

k-1n

k-I

5O



-~2 
[l -u-n(-k In (I -.' ' uk"

nf u -In(1 - ,) + k a --. (1 -u' )

+ ["In . n(1 -u d

2n

+ u1  2 n(1-u)u
+n )

r 2 k-i ~ ______

=)--- in Uk + (2(n-k) + 1 )
ki n~ 2 J 1 2

k-1

n k-,5
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APPENDIX C: DERIVATION OF THE
CRAMER-VON MISES STATISTIC

53



I'NnTO\AL.Ly LEFT BLAxN,.

54



APPENDIX C: DERIVATION OF THE
CRAMER-VON MISES STATISTIC

For an ordered sample x1 < Xo < < xn the empirical distribution
function is defined as

0 x < X

F for Xk<X<Xk+l
n
1 xn x

The Cramr-von .lises statistic may be written

n f [Fn(x) - F(x)' 2 dF(x)

X 
n _1 2- - 1 )12l

n f [Fn(x) - F(x)12 dF(x) + E f [Fn(x) - F(x)]2 dF(x)
-0C k-1 Xk

+ f [F,(x) F(x)] 2 dF(x)

Let F(x) = u
dF(x) = du
F(x,) = u,

5;5



Then
c

n f [F"(X) - F(X), 2 dF(x)
-c

on-i

n [-u du + E -- du + }[1--u du
0k-l uk u,

3~ + n E k2 k3] u + U4 u+ U2 u~ ]}n { u3 nl 7k) u, - u2 - + u3Ul _} n n u

13k-tIn" n 3 ] k 3 u 3

n-I

3 k~ (u-iu)

1 E I (U3+ 1 _ U3 - n  u  3
±+ k ku-) + n+U

= l{u +  2_z ( -(2 k1)k)+(n1 )2Un]

--{ -- -- u +(n I-)u[
n k=l

{ n~ [ ., [ 2 k n _ + _1+ 1 2  '2n - l u
= n uk 2 uk] + 3 nun n 2  Un

n u 2 k- I + -
k-I k n 3
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Completing the square,

n2k --I n 2k - 1 2

kI Uk - 12n 2 + - k-i 2n 1

k- U 2k --1J + 12 32 + - +(2n 1)2)= Uk- 2n 3 4n2

S [ 2k -- 1} n (n)(4n 2  1)
r- Uk -+ 2k-1 2n 3 4n 3

2k -- 1 ' +9k-n 12n
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